Non Return Valve Type DTEF
DN015 - 150

Designation	Material
Supporting ring | St.steel 1.4301
Body / Retainer | see table
Valve plate | see table
Spring | Hastelloy C4, PFA coated

Technical specifications
Placement between flange according to DIN EN 1092-1 PN10 and ANSI B 16.5 CL. 150
Nominal pressure max. PN10
Overall lengths according to DIN EN 558, Gr. 52
Tightness according to DIN EN 12266-1, Leakage Rate D (Sealing M and T) and Leakage Rate A (Sealing E, P, V)
Operational limits according to DIN EN 1092-1
Identification according to DIN EN 19

Utilisation
For aggressive liquids, gases and steams in all process technology.

Construcational Features
Parts which are in contact with the medium are made of PTFE or other high-quality synthetics.
The supporting ring chambers the body and protects from lateral flange pressure.
Guiding of valve plate by the ribs of the spring cap.
The Hastelloy C4 spring is coated with a PTFE/PFA tube and welded on the ends.

Special Types
On request

Designation: DTEF- 7 5 - 7 5 - M - 1 0 0
 pains ote: DTEF- DN015 - 150

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PTFE + 25% glass</td>
<td>75</td>
<td>PTFE + 25% glass</td>
<td>75</td>
<td>VITON</td>
</tr>
<tr>
<td>TFM/PTFE cond. FDA</td>
<td>87</td>
<td>TFM/PTFE cond. FDA</td>
<td>87</td>
<td>EPDM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NBR</td>
<td>-30 bis 120°C</td>
</tr>
</tbody>
</table>

Subject to change without notice
Data Sheet

Chapter 5

Non Return Valve Type DTEF:

<table>
<thead>
<tr>
<th>DN (mm)</th>
<th>015</th>
<th>020</th>
<th>025</th>
<th>032</th>
<th>040</th>
<th>050</th>
<th>065</th>
<th>080</th>
<th>100</th>
<th>125</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN (zoll)</td>
<td>1/2"</td>
<td>3/4"</td>
<td>1"</td>
<td>1 1/4"</td>
<td>1 1/2"</td>
<td>2"</td>
<td>2 1/2"</td>
<td>3"</td>
<td>4"</td>
<td>5"</td>
<td>6"</td>
</tr>
<tr>
<td>L</td>
<td>25</td>
<td>31.5</td>
<td>35.5</td>
<td>40</td>
<td>45</td>
<td>56</td>
<td>63</td>
<td>71</td>
<td>80</td>
<td>90</td>
<td>106</td>
</tr>
<tr>
<td>ØD1, PN10</td>
<td>51</td>
<td>61</td>
<td>71</td>
<td>82</td>
<td>92</td>
<td>107</td>
<td>127</td>
<td>142</td>
<td>162</td>
<td>192</td>
<td>218</td>
</tr>
<tr>
<td>ØD1, ANSI150</td>
<td>47.6</td>
<td>57.1</td>
<td>66.7</td>
<td>76.2</td>
<td>85.7</td>
<td>104.7</td>
<td>123.8</td>
<td>136.5</td>
<td>170</td>
<td>192</td>
<td>218</td>
</tr>
<tr>
<td>Gewicht</td>
<td>0.1</td>
<td>0.3</td>
<td>0.4</td>
<td>0.55</td>
<td>0.8</td>
<td>1.3</td>
<td>2</td>
<td>2.5</td>
<td>3.6</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

The pressure rates marked in blue are indicating the use of a centre ring. (See extra charges on the price list).

Opening pressures (mbar)

<table>
<thead>
<tr>
<th>DN (mm)</th>
<th>015</th>
<th>020</th>
<th>025</th>
<th>032</th>
<th>040</th>
<th>050</th>
<th>065</th>
<th>080</th>
<th>100</th>
<th>125</th>
<th>150</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN (zoll)</td>
<td>1/2"</td>
<td>3/4"</td>
<td>1"</td>
<td>1 1/4"</td>
<td>1 1/2"</td>
<td>2"</td>
<td>2 1/2"</td>
<td>3"</td>
<td>4"</td>
<td>5"</td>
<td>6"</td>
</tr>
<tr>
<td>po ↑</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>33</td>
<td>33</td>
<td>35</td>
</tr>
<tr>
<td>po ↓</td>
<td>20</td>
</tr>
</tbody>
</table>

Pressure drop diagramm

Pressure drop diagram for water at 20°C with opened valve and horizontal flow.

For calculating the pressure drop of the medium the equivalent water flow volume has to be calculated.

\[
\dot{V}_w = \dot{V} \sqrt{\frac{\rho}{1000}}
\]

\[
\dot{V}_w = \text{Equivalent water flow volume in m}^3/\text{h}
\]

\[
\rho = \text{Density of the medium (in use) kg/m}^3
\]

\[
\dot{V} = \text{Flow volume of the medium (in use) in m}^3/\text{h}
\]